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3D Response is an Important Issue for ITER

 ELM Suppression
— Resonant Magnetic Perturbations (RMP)
— QH-Mode

e Fast lon Loss
e Divertor Particle/Heat Flux

 Mode Locking
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* RMP ELM suppression: hypothesis and
unresolved questions

— Transport limits pedestal, but how?e

e Efforts to validate models

— Modeling can reproduce large observed
edge “displacements”

* Future directions and opportunities
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Hypothesis for RMP ELM Suppression:

RMP-Driven Transport Limits the Pedestal Width

* Pedestal width is reduced (at low

>

collisionality) ;

. . . . " ELMir)g i

— Reduced width is consistent with 5\ ;

ideal peeling/ballooning stability g% |

— Particle confinement is degraded; = |
temperature is not reduced | S

Radius X

Transport changes
most in this region

 Main questions for RMP ELM suppression:
— What is mechanism of additional tfransporte
— What determines g95 windows, thresholds (B, v*, density)?
— How much must confinement be degraded?
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Experimental Results Are Inconclusive in

Determining Internal Response

 Magnetic topology / 3D siructure is difficult to
measure

— Internal measurements have no toroidal resolution
— Islands are probably small; dominated by other effects

e Can flip n=3 fields
— WIll shift x-points to o-points
— Inconclusive results: no clear “signature” of islands

e Can rotate phase of n=2 fields
— Will sweep structures past diagnostics

— Error fields lead to significant phase-dependence of
response
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Modeling is Necessary to Make Sense of

Experimental Results

e What is the expected internal magnetic response?

— How does magnetic response depend on plasma
parameterse

e How does magnetic response affect tfransport?
— Islands/stochasfticitye
— Fluttere Turbulencee Convection?

* Models must be benchmarked against
measureable response

— Magnetic probe data
— Internal measurements (TS, BES, x-ray, etc.)
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M3D-C1 is Being Used to Calculate Two-Fluid

3D Response

e Boundary Conditions:

— Normal component of “vacuum
fields™ from |-coils, C-coills, efc.

— Canread fields from TRIP3D
* Real coil geometry & error fields

e Linear calculations:
— Time-independent equations
— Single toroidal mode number
— ~2-4 cpu hrs

 Nonlinear calculations:
— Run until Y*guasi-steady state™
— ~5k-10k cpu-hrs
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Radial Resolution in Pedestal Region is

Typically a Few Millimeters

Equilibrium Toroidal Current Density
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- Anisotropic
mesh
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_ magnetic
005 fields
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Response Is Typically Similar to Least-Stable

Mode

 Plasmas near P/B thresholds
exhibit large edge response

 Plasmas near tecmng thresholds

1.0 1.2 1.4 1.6 1.8 2.0 2.2
R (m)
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Magnetic Field is Strongly Affected By Plasma

Response

* Plasma response significantly modifies fields

— Reduces resonant components (island screening)

—  Amplifies non-resonant components (kink excitation/bending)
* Both effects have significant transport implications

~ Yacuum (n=3 even parity |-coil Plasma (I\/\3D—C]

\
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Normal Field (¢-B) from even parity n=3 I-Ccoils
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Plasma Response Significantly Affects Edge

Topology, Even When Screening is Not Complete
Vacuum Plasma

M3D-C1 vacuum, 126006 3600ms €fit06, monochromatic n=3 |-coil 4kA M3D-C1 plasma response — two-fluid, 126006 3600ms efit06, monochromatic n=3 I-coil 4kA
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* Modeling shows both imperfect screening and a reduction in
stochasticity (from vacuum level) when plasma response is included

— Vacuum: even fields lines starting at W=.80 can be lost
— Plasma: only field lines starting outside of W=.97 are |ost
* Large island occurs where perpendicular electron rotation vanishes

0 50 100 150 200 250 300 350 0 50 100
poloidal angle 6
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Perpendicular Electron Rotation Plays

Important Role In Tearing Response

St 1.45 MA o ] I, scan
1.46 MA o |

F T an Ma | n=3 |-coil fields
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* Width of peakin o,=0is ~10 krad/s

e This implies islands can open easily near top of pedestal

— Experiments show hints of “island-like structures” (maybe),
but measurement/interpretation is difficult
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In Model, Temperature Inversions are

Correlated with Islands
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e Correlation is not perfect; nonlinear effects will modify profiles
Experimental results are subtle and complicated by error fields

— n=0response is phase-dependent
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Edge Displacements Represent a Clear

Empirical Result to Compare with Modeling

* Experiments with applied 3D fields find large (~2
cm) displacements of edge profiles

* |tis generally believed (but not proven) that
these displacements are 3D (helical), not n=0
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Modeling Shows Quantitative Agreement with

Observed Edge Temperature Displacement

 Pedestal measurements clearly show displacements
of 1—4 cm in edge when 3D fields are applied

— Vacuum modeling predicts separatrix perturbations of @
few mm

— Linear plasma response modeling shows helical
perturbations of comparable magnitude to experiment
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Modeling Shows Quantitative Agreement with

Observed Edge Temperq’rure Dlsplacemen’r
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2D Imaging Will Also Provide Basis for

Validation

* New Xx-ray
camera will
probe response
near x-point

-0.6

2x10"®

-0.8

e Will impurities
collect inside
islands and
increase x-ray
signal?

-2x10'®
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Not All Codes Agree on Displacements
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Response Violates Ideal-MHD Linear

Assumption Through Much of Edge

ld¢/dr|

1.0

e Nearby surfaces
overlap if 95, /dr <-1

0.8

* This condition is violated
in edge for typical I-cail
currents
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region
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M3D-C1 Calculations Suggest Linearity is Not

Source of Discrepancy
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Opportunities For Extended-MHD Contributions

e Transport in 3D Fields

— Particle/Heat Flux to divertor, PFCs
e TRIP3D now reads M3D-C1 output

— Hot ion transport
e ORBIT now reads M3D-C1 output

— Flutter, 3D gyrokinetics, etc.

e Nonlinear EHO simulations: can ITER achieve QH
mode?

— Why does EHO saturate and not just become an ELM?
— How/when is EHO driven by coils?

e Torque Calculations
— How much will 3D fields slow rotation - locking
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RMP ELM suppression is plausibly due to 3D-
induced transport limiting the pedestal

Detailed experimental data is being produced to
test hypotheses

— Data is inconclusive; modeling is needed

Modeling appears to agree well with observable
3D response

— Beta dependence of external magnetics signal
— Helical displacement of edge profiles

Many questions and opportunities remain
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Extra Slides

0:0 GENERAL ATOMICS



In QH-Mode EHO Holds Profiles Close to Stability

Thresholds

e Current hypothesis of QH-Mode is strongly influenced by Peeling/
Ballooning theory

— Edge rotation shear drives edge kink unstable

— Edge mode (EHO) saturates

— EHO drives transport, holding profiles below stability threshold
— Profiles remain close to stability limit - little confinement

degradation
O
« Given this understanding, QH-Mode in ITER A \9\066\\
looks promising £ | O 5\00\6 >
— I(TEEPREB)edesToI will be kink/peeling unstable & | ¢ So
= S 3
— Rotation shear can be driven by coils % Vol 5\053
g SN
e EHO is a saturated MHD mode - N
- n~2—5 , , / Pressure Gradient
— Linearly unstable = requires nonlinear
modeling * necessary to be here
— “Location” of mode is not certain for QH, but not sufficient!

— Mode rotates (i.e. it isn’'t locked)
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Boundary Layers in Edge Are Roughly ~1 cm
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Two-Fluid Model Implemented in M3D-C1

O;_IZ_I_V.(nu)=O E=—UXB+HJ+F(JXB_VP(;J
n
T
n(%+u-Vu)=JxB—Vp—V~H H=—M[Vu+(Vu)]
t
p
| — _kVp-kbb-V|£e
dp+u-Vp=—FpV'u—[d‘J’(rpevn—Vpeﬂ A=A (”)
ot n n
r-1)v J=V B
-(C-1)V-q r=5/3
@=-VxE p.=p/2

ot

. [Two-fluid}terms scale with ion skin depth (d.)

e Time-independent equations may be solved directly
for linear response
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